
Abstract — In this paper, the study on Collocation and 
Galerkin approaches are carried out, which have their own 
advantages and disadvantages. A new method, called multi-
weight-function indirect boundary element method 
(MWFIBEM) is proposed. In this method, the Collocation and 
Galerkin procedures were synthetically employed to deal with 
the continuous integral equations. It makes full use of the 
advantages of the two procedures and provides a better trade-
off between accuracy and efficiency. The availability of this 
method is demonstrated by comparing the calculated results 
obtained by MWFIBEM with that obtained by finite element 
method (FEM). 

I. INTRODUCTION 
For some typical and idealized cases, analytical 

solutions for surface electric filed are available. However, 
for most practical problems involving electrical equipments 
with large-size and complex-structure, numerical methods 
have to be employed. The boundary element method has 
emerged as an effective numerical technique for electro-
magnetic analysis and other computational engineering. It 
can be regarded as an important part of modern scientific 
computing. In BEM method, only the boundary of the 
domain is discretized, and the number of variables is 
determined only on the boundaries. Compared to domain-
type methods such as finite element method (FEM) and 
finite difference method (FDM), this boundary method can 
decrease the problem size and the problem setup on a large 
scale. 

In general, there are two basic procedures which are 
employed to deal with the continuous integral equation [1]-
[2]. One is Collocation, and the other is Galerkin. The 
former is simple, convenient and time saving. In this 
procedure, the boundary integral equations are explicitly 
enforced at a finite set of points. In contrast to Collocation, 
the latter is more accurate and complicated [3]-[5]. In the 
Galerkin approach, the integral equations have not to be 
satisfied at any point. Instead the equations are enforced in 
a weighted average sense. Because it is obtained by 
projecting the exact solution onto the subspace consisting 
of all functions which are a linear combination of the shape 
functions, the Galerkin solution is therefore the linear 
combination that is the ‘closes’ to the exact solution. In 
addition, the treatment of hypersingular integrals with 
Galerkin approach is actually much simpler than with 
Collocation. The weighted averaging formula in the 
Galerkin BEM provides a reliable solution in the 
neighborhood of geometric discontinuities such as corners 
and junctions. However, the Galerkin approach involves 
one more integration compared to Collocation and has to 

take much more time to calculate the coefficients as shown 
in Fig. 1.  
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Fig. 1. Computing time comparison between Galerkin and  

Collocation method 
  
In this paper, we combined the Collocation and 

Galerkin approaches in IBEM. Towards different field 
domains, different weight-functions are employed to reduce 
the continuous integral equation. When analyzing the 
critical areas where the field intensity is high, we adopt 
Galerkin procedure to discretize the integral equation. 
Otherwise, if the field intensity is low in some areas, 
Collocation will be implemented. This MWFIBEM that 
provides a better trade-off between accuracy and efficiency, 
proves simple and satisfactory. 

II. MULTI-WEIGHT-FUNCTION IBEM 
The main sources of error in discretizing the continuous 

equations are the three factors: the interpolation of the 
boundary, the interpolation of the boundary functions and 
the choice of weight-function. We take one of the most 
convenient schemes to accomplish the interpolation of the 
boundary and boundary functions. The boundary and 
boundary functions are represented through the same set of 
simple shape functions defined on a parameter space. The 
boundary surface S is approximated as a sum of small 
surface patches called elements, each of which is defined as 
a mapping from a fixed parameter domain in R2. In this 
paper, we choose the 3D linear quadrilateral as shown in 
Fig. 2. The parametric variables will be called {ξ, η}, and 
the quadrilateral with vertices h1 = (-1, -1), h2 = (1, -1), h3 = 
(1,1), h4 = (-1,1) is defined by -1≤ ξ ≤ 1, -1≤η≤ 1. 
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Fig. 2. The quadrilateral parameter space {ξ, η}  

 
The function interpolations can be constructed based 

upon the linear shape functions 
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After completing the interpolation of the boundary and 
boundary functions, we now discuss how to choose the 
weight-function according to the practical engineering 
problems. Take the shielding covers in HVDC converter 
system for example (see Fig. 3.), it can be obviously 
figured out that the maximum surface electric field exists 
on the corners on the basis of experience or electromagnetic 
theories. Consequently, much more attention should be paid 
to those areas during analyzing the field distribution while 
others can be attached little importance to. 

 

 
Fig. 3. The shielding covers for HVDC converter system  

 

 
Fig. 4. The Collocation points and integration  

 
As a result, we take two procedures: Collocation and 

Galerkin to deal with the integral equation. In the Galerkin 

approach, interpolation functions are taken as weight-
function. In Collocation procedure, the nodes used to 
discretize the boundary are chosen to be Collocation points 
in order to avoid singular integrals (Fig. 4.). 

III. APPLICATION AND VERIFICATION  
To verify the principle described above, the surface 

electric field on shielding covers in ±800kV HVDC 
converter systems (Fig. 3.) was calculated by the 
MWFIBEM and FEM, respectively. The maximum field 
intensity can be seen from Fig. 5. and Fig. 6. They are 20.2 
kV/ cm and 21.6 kV/ cm. The computational costs are 
shown in Tab. 1. 

 
Fig. 5.  The maximum field intensity obtained by the MWFIBEM 

 
Fig. 6. The maximum field intensity obtained by FEM 

 TABLE I 
COMPUTATIONAL COSTS COMPARISON BETWEEN THE FEM 

AND MWFIBEM 

Item FEM MWFIBEM 
Computer type Server Personal computer 

Memory 20G 1.5G 
Storage space 15G 300M 

Time 2 hours 5 hours 
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